Introduction
attrib
provides a way of estimating what the mortality would have been if some given exposures are set to a reference value. By using simulations from the posterior distribution of all coefficients we can easily aggregate over time and locations while still estimating valid credible intervals.
This vignette will go through:
- how to use
fit_attrib
to fit the model to the data - how to use
est_attrib
to estimate the mortality under different scenarios (i.e. when the exposures are at reference values and at observed values) - some examples of usages of the resulting dataset
Data example
We will use the datasets data_fake_attrib_county
and data_fake_attrib_nation
.
data_fake_attrib_county
consists of fake mortality data for all counties of Norway on a weekly basis from 2010 until 2020. The dataset consists of the following features:
- location_code: Location code of the different counties
- isoyear: Isoyear
- isoweek: Week number
- isoyearweek: Isoyear and isoweek
- season: Years of the season
- seasonweek: Number of weeks from the start of the season
- pop_jan1_n: Population size
- ili_isoweekmean0_6_pr100: Percentage of doctors consultations diagnosed with influenza like illnesses
- ili_isoweekmean7_13_pr100: ili_isoweekmean0_6_pr100 lagged with one week
- heatwavedays_n: number of heatwaves
- deaths_n: number of deaths
data_fake_attrib_nation
is a similar dataset at the national level.
data_fake_county <- attrib::data_fake_attrib_county
data_fake_nation <- attrib::data_fake_attrib_nation
head(data_fake_county, 5)
#> location_code isoyear isoweek isoyearweek season seasonweek pop_jan1_n
#> 1: county_nor03 2010 1 2010-01 2009/2010 24 693494
#> 2: county_nor03 2011 1 2011-01 2010/2011 24 693494
#> 3: county_nor03 2012 1 2012-01 2011/2012 24 693494
#> 4: county_nor03 2013 1 2013-01 2012/2013 24 693494
#> 5: county_nor03 2014 1 2014-01 2013/2014 24 693494
#> ili_isoweekmean0_6_pr100 ili_isoweekmean7_13_pr100 heatwavedays_n deaths_n
#> 1: 0.9231202 0.8146507 0 112
#> 2: 1.8997241 1.7890927 0 113
#> 3: 1.3924947 1.6017501 0 128
#> 4: 0.9296033 0.7167721 0 126
#> 5: 1.3933639 1.1638354 0 115
In this example we will look at the exposures ili_isoweekmean7_13_pr100
and heatwavedays_n
and calculate the attributable mortality due to these exposures.
Fitting using fit_attrib
County level
We want to estimate the attributable mortality due to ILI and heatwaves. attrib
lets us fit models with both fixed and random effect and offsets using linear mixed models (LMM).
We use the glmer
function from the lme4
package. In practice, this means we must specify the response, offsets, the fixed effects, and the random effects. In our case we will model the response deaths as a function of:
- the fixed effects:
- heatwavedays_n
- ili_isoweekmean7_13_pr100
- sin(2 * pi * (isoweek - 1) / 52)
- cos(2 * pi * (isoweek - 1) / 52)
- the random effects:
- (1|location_code)
- (ili_isoweekmean7_13_pr100|season)
- the offset:
- log(pop_jan1_n)
#response
response <- "deaths_n"
# fixed effects
fixef_county <- " heatwavedays_n +
ili_isoweekmean7_13_pr100 +
sin(2 * pi * (isoweek - 1) / 52) +
cos(2 * pi * (isoweek - 1) / 52)"
#random effects
ranef_county <- "(1|location_code) +
(ili_isoweekmean7_13_pr100|season)"
#offset
offset_county <- "log(pop_jan1_n)"
# Now we fit the model using `fit_attrib`.
fit_county <- fit_attrib(
data_fake_county,
response = response,
fixef = fixef_county,
ranef = ranef_county,
offset = offset_county
)
This results in the following fit:
fit_county
#> Generalized linear mixed model fit by maximum likelihood (Laplace
#> Approximation) [glmerMod]
#> Family: poisson ( log )
#> Formula: deaths_n ~ heatwavedays_n + ili_isoweekmean7_13_pr100 + sin(2 *
#> pi * (isoweek - 1)/52) + cos(2 * pi * (isoweek - 1)/52) +
#> offset(log(pop_jan1_n)) + (1 | location_code) + (ili_isoweekmean7_13_pr100 |
#> season)
#> Data: data
#> AIC BIC logLik deviance df.resid
#> 44402.03 44462.79 -22192.02 44384.03 6305
#> Random effects:
#> Groups Name Std.Dev. Corr
#> location_code (Intercept) 0.001725
#> season (Intercept) 0.002016
#> ili_isoweekmean7_13_pr100 0.005003 -1.00
#> Number of obs: 6314, groups: location_code, 11; season, 11
#> Fixed Effects:
#> (Intercept) heatwavedays_n
#> -8.79945 0.07321
#> ili_isoweekmean7_13_pr100 sin(2 * pi * (isoweek - 1)/52)
#> 0.03429 0.01448
#> cos(2 * pi * (isoweek - 1)/52)
#> 0.06784
#> optimizer (Nelder_Mead) convergence code: 0 (OK) ; 0 optimizer warnings; 1 lme4 warnings
Note that fit has the added attributes offset
(saving the offset name) and fit_fix
(the coefficients of the linear model fitted on only the fixed effects). These are needed by est_attrib
to create the dataset containing only the fixed effects.
National level
We estimate the same as before But on a national level, meaning we remove the random effect (1|location_code) since we only have one location code. This gives the following features:
- the fixed effects:
- heatwavedays_n
- ili_isoweekmean7_13_pr100
- sin(2 * pi * (isoweek - 1) / 52)
- cos(2 * pi * (isoweek - 1) / 52)
- the random effects:
- (ili_isoweekmean7_13_pr100|season)
- the offset:
- log(pop_jan1_n)
#response
response <- "deaths_n"
# fixed effects
fixef_nation <- " heatwavedays_n +
ili_isoweekmean7_13_pr100 +
sin(2 * pi * (isoweek - 1) / 52) +
cos(2 * pi * (isoweek - 1) / 52)"
#random effects
ranef_nation <- "(ili_isoweekmean7_13_pr100|season)"
#offset
offset_nation <- "log(pop_jan1_n)"
# Now we fit the model using `fit_attrib`.
fit_nation <- fit_attrib(
data_fake_nation,
response = response,
fixef = fixef_nation,
ranef = ranef_nation,
offset = offset_nation
)
Using the sim function
The sim
function can be used to generate simulations for all the rows in our data.
It first generates n_sim
simulations from the posterior distribution of the coefficients from out fit before applying these coefficients on our dataset generating n_sim
simulations and expected mortality for each line. This is quite generic. Hence if the goal is to compute attributable mortality or incident risk ratios we use est_attrib
as shown in a later part of the vignette.
n_sim <- 20
sim_data <- sim(fit_nation, data_fake_nation, n_sim)
head(sim_data[id_row == 1], 5)
#> location_code isoyear isoweek isoyearweek season seasonweek pop_jan1_n
#> 1: nation_nor 2009 30 2009-30 2009/2010 1 5367580
#> 2: nation_nor 2009 30 2009-30 2009/2010 1 5367580
#> 3: nation_nor 2009 30 2009-30 2009/2010 1 5367580
#> 4: nation_nor 2009 30 2009-30 2009/2010 1 5367580
#> 5: nation_nor 2009 30 2009-30 2009/2010 1 5367580
#> ili_isoweekmean0_6_pr100 ili_isoweekmean7_13_pr100 heatwavedays_n deaths_n
#> 1: 8.98914e-07 0 0.8181818 827
#> 2: 8.98914e-07 0 0.8181818 827
#> 3: 8.98914e-07 0 0.8181818 827
#> 4: 8.98914e-07 0 0.8181818 827
#> 5: 8.98914e-07 0 0.8181818 827
#> id_row sim_id sim_value
#> 1: 1 1 807.6832
#> 2: 1 2 812.3173
#> 3: 1 3 813.6113
#> 4: 1 4 808.8405
#> 5: 1 5 808.5622
We can see that we now have multiple expected mortalities for the same dataline. This is due to the coefficient simulations.
Estimating attributable mortality using est_attrib
To estimate attributable mortality we simulate:
- the estimated mortality for observed exposures
- the estimated mortality for the exposures set to reference values
This is easily done using est_attrib
.
We need to give the fit, the dataset, the exposures with reference values, and the number of simulations. est_attrib
will then using the arm::sim
function to generate simulations of the underlying posterior distribution. attrib::sim
will then combine the simulated coefficients to estimate the modeled outcome (i.e. number of deaths) for each simulation.
exposures <- list( "heatwavedays_n" = 0, "ili_isoweekmean7_13_pr100" = 0)
n_sim <- 20
est_attrib_sim_county <- attrib::est_attrib(
fit_county,
data_fake_county,
exposures = exposures,
n_sim = n_sim
)
est_attrib_sim_nation <- attrib::est_attrib(
fit_nation,
data_fake_nation,
exposures = exposures,
n_sim = n_sim
)
head(est_attrib_sim_county, 5)
#> location_code isoyear isoweek isoyearweek season seasonweek pop_jan1_n
#> 1: county_nor03 2010 1 2010-01 2009/2010 24 693494
#> 2: county_nor03 2011 1 2011-01 2010/2011 24 693494
#> 3: county_nor03 2012 1 2012-01 2011/2012 24 693494
#> 4: county_nor03 2013 1 2013-01 2012/2013 24 693494
#> 5: county_nor03 2014 1 2014-01 2013/2014 24 693494
#> ili_isoweekmean0_6_pr100 ili_isoweekmean7_13_pr100 heatwavedays_n deaths_n
#> 1: 0.9231202 0.8146507 0 112
#> 2: 1.8997241 1.7890927 0 113
#> 3: 1.3924947 1.6017501 0 128
#> 4: 0.9296033 0.7167721 0 126
#> 5: 1.3933639 1.1638354 0 115
#> id sim_id sim_value_exposures=observed sim_value_heatwavedays_n=0
#> 1: 1 1 115.2848 115.2848
#> 2: 2 1 118.8018 118.8018
#> 3: 3 1 118.6690 118.6690
#> 4: 4 1 115.1537 115.1537
#> 5: 5 1 117.3832 117.3832
#> sim_value_ili_isoweekmean7_13_pr100=0
#> 1: 112.6020
#> 2: 113.0848
#> 3: 113.0562
#> 4: 112.9620
#> 5: 112.8126
We can see in the above dataset that the columns id, sim_id, sim_value_exposures=observed, sim_value_heatwavedays_n=0, sim_value_ili_isoweekmean7_13_pr100=0 are added to the previous set of columns. For each row in the original dataset we now have 20 rows, one for each of the simulations done by est_attrib. In each row we see the estimate of the number of deaths given a reference value for sim_value_heatwavedays_n and sim_value_ili_isoweekmean7_13_pr100.
To make the data processing easier later we convert the dataset from wide to long form and collapse the estimated mortality
est_attrib_county_long <- data.table::melt.data.table(
est_attrib_sim_county,
id.vars = c(
"location_code",
"isoyear",
"isoweek",
"isoyearweek",
"season",
"seasonweek",
"id",
"sim_id",
"deaths_n",
"sim_value_exposures=observed"
),
measure.vars = c(
"sim_value_heatwavedays_n=0",
"sim_value_ili_isoweekmean7_13_pr100=0"
)
)
data.table::setnames(est_attrib_county_long, "variable", "attr")
head(est_attrib_county_long, 5)
#> location_code isoyear isoweek isoyearweek season seasonweek id sim_id
#> 1: county_nor03 2010 1 2010-01 2009/2010 24 1 1
#> 2: county_nor03 2011 1 2011-01 2010/2011 24 2 1
#> 3: county_nor03 2012 1 2012-01 2011/2012 24 3 1
#> 4: county_nor03 2013 1 2013-01 2012/2013 24 4 1
#> 5: county_nor03 2014 1 2014-01 2013/2014 24 5 1
#> deaths_n sim_value_exposures=observed attr value
#> 1: 112 115.2848 sim_value_heatwavedays_n=0 115.2848
#> 2: 113 118.8018 sim_value_heatwavedays_n=0 118.8018
#> 3: 128 118.6690 sim_value_heatwavedays_n=0 118.6690
#> 4: 126 115.1537 sim_value_heatwavedays_n=0 115.1537
#> 5: 115 117.3832 sim_value_heatwavedays_n=0 117.3832
We can see that the columns sim_value_heatwavedays_n=0, sim_value_ili_isoweekmean7_13_pr100=0 are now collapsed into the new column attr and value with attr describing which exposure we have and value giving the corresponding reference value.
est_attrib_nation_long <- data.table::melt.data.table(
est_attrib_sim_nation,
id.vars = c(
"location_code",
"isoyear",
"isoweek",
"isoyearweek",
"season",
"seasonweek",
"id",
"sim_id",
"deaths_n",
"sim_value_exposures=observed"
),
measure.vars = c(
"sim_value_heatwavedays_n=0",
"sim_value_ili_isoweekmean7_13_pr100=0"
)
)
data.table::setnames(est_attrib_nation_long, "variable", "attr")
head(est_attrib_nation_long, 5)
#> location_code isoyear isoweek isoyearweek season seasonweek id sim_id
#> 1: nation_nor 2009 30 2009-30 2009/2010 1 1 1
#> 2: nation_nor 2009 31 2009-31 2009/2010 2 2 1
#> 3: nation_nor 2009 32 2009-32 2009/2010 3 3 1
#> 4: nation_nor 2009 33 2009-33 2009/2010 4 4 1
#> 5: nation_nor 2009 34 2009-34 2009/2010 5 5 1
#> deaths_n sim_value_exposures=observed attr value
#> 1: 827 803.9490 sim_value_heatwavedays_n=0 752.9165
#> 2: 751 787.7830 sim_value_heatwavedays_n=0 754.0824
#> 3: 811 778.3170 sim_value_heatwavedays_n=0 755.9586
#> 4: 787 792.4217 sim_value_heatwavedays_n=0 758.5227
#> 5: 828 784.2740 sim_value_heatwavedays_n=0 761.7444
Compare the national data to data aggregated from county to national level.
We will now aggregate our two simulated datasets (one on a county level and one on a national level) to aid in comparison.
Aggregate from county/weekly to national/seasonal
We proceed by aggregating the county dataset to the national/seasonal level. Afterwards we calculate the expected attributable mortality, exp_attr
, by subtracting value
(the simulated expected number of deaths given the reference value of the exposure) from the sim_value_exposures=observed.
To be able to separate this dataset from the other we add a tag.
aggregated_county_to_nation <- est_attrib_county_long[,.(
"sim_value_exposures=observed" = sum(`sim_value_exposures=observed`),
value = sum(value),
deaths_n = sum(deaths_n)
), keyby = .(season, attr, sim_id)]
# Add exp_attr, exp_irr and a tag.
aggregated_county_to_nation[, exp_attr:= (`sim_value_exposures=observed` - value)]
aggregated_county_to_nation[, tag := "aggregated_from_county"]
head(aggregated_county_to_nation, 5)
#> season attr sim_id sim_value_exposures=observed
#> 1: 2009/2010 sim_value_heatwavedays_n=0 1 44215.17
#> 2: 2009/2010 sim_value_heatwavedays_n=0 2 44118.33
#> 3: 2009/2010 sim_value_heatwavedays_n=0 3 44256.30
#> 4: 2009/2010 sim_value_heatwavedays_n=0 4 44378.56
#> 5: 2009/2010 sim_value_heatwavedays_n=0 5 44207.97
#> value deaths_n exp_attr tag
#> 1: 43790.66 44006 424.5086 aggregated_from_county
#> 2: 43691.73 44006 426.6041 aggregated_from_county
#> 3: 43841.87 44006 414.4370 aggregated_from_county
#> 4: 43928.39 44006 450.1779 aggregated_from_county
#> 5: 43814.60 44006 393.3718 aggregated_from_county
Aggregating the national model per season
For the national model we aggregate over seasons and create exp_attr in the same way as above.
aggregated_nation <- est_attrib_nation_long[, .(
"sim_value_exposures=observed" = sum(`sim_value_exposures=observed`),
value = sum(value),
deaths_n = sum(deaths_n)
), keyby = .(season, attr, sim_id)]
aggregated_nation[, exp_attr:= (`sim_value_exposures=observed` - value)]
aggregated_nation[, tag:= "nation"]
head(aggregated_nation, 5)
#> season attr sim_id sim_value_exposures=observed
#> 1: 2009/2010 sim_value_heatwavedays_n=0 1 44036.78
#> 2: 2009/2010 sim_value_heatwavedays_n=0 2 44455.61
#> 3: 2009/2010 sim_value_heatwavedays_n=0 3 44392.48
#> 4: 2009/2010 sim_value_heatwavedays_n=0 4 44292.20
#> 5: 2009/2010 sim_value_heatwavedays_n=0 5 44298.72
#> value deaths_n exp_attr tag
#> 1: 43592.03 44006 444.7479 nation
#> 2: 44023.27 44006 432.3382 nation
#> 3: 43881.41 44006 511.0745 nation
#> 4: 43889.30 44006 402.8978 nation
#> 5: 43852.09 44006 446.6314 nation
For simplicity we data.table::rbindlist
the two datasets together.
Calculate simulation quantiles.
The next thing to do is to aggregate away the simulations. The benefits of having the simulations is the possibility it gives to efficiently compute all desired quantiles. For this example we will use the .05, .5 and .95 quantiles.
# Quantile functins
q025 <- function(x){
return(quantile(x, 0.025))
}
q975 <- function(x){
return(quantile(x, 0.975))
}
We compute the quantiles for exp_attr in the following way.
col_names <- colnames(data_national)
data.table::setkeyv(
data_national,
col_names[!col_names %in% c(
"exp_attr",
"sim_id",
"sim_value_exposures=observed",
"value",
"deaths_n"
)]
)
aggregated_sim_seasonal_data_national<- data_national[
,
unlist(
recursive = FALSE,
lapply(.(median = median, q025 = q025, q975 = q975), function(f) lapply(.SD, f))
),
by = eval(data.table::key(data_national)),
.SDcols = c("exp_attr")
]
head(aggregated_sim_seasonal_data_national,5)
#> season attr tag
#> 1: 2009/2010 sim_value_heatwavedays_n=0 aggregated_from_county
#> 2: 2009/2010 sim_value_heatwavedays_n=0 nation
#> 3: 2009/2010 sim_value_ili_isoweekmean7_13_pr100=0 aggregated_from_county
#> 4: 2009/2010 sim_value_ili_isoweekmean7_13_pr100=0 nation
#> 5: 2010/2011 sim_value_heatwavedays_n=0 aggregated_from_county
#> median.exp_attr q025.exp_attr q975.exp_attr
#> 1: 417.5605 382.9442 442.1179
#> 2: 454.2046 356.0820 540.8355
#> 3: 697.6681 588.1522 796.8705
#> 4: 748.3907 427.4833 916.7578
#> 5: 465.0584 430.8729 500.5043
We can now see that we have credible intervals and estimates for attributable deaths for all exposures.
Plot to compare the national with the aggregated county to national model
To be able to compare the two models we make a point range plot using ggplot2.
q <- ggplot(
aggregated_sim_seasonal_data_national[attr == "sim_value_ili_isoweekmean7_13_pr100=0"],
aes(x = season, y = median.exp_attr, group = tag, color = tag)
)
q <- q + geom_pointrange(
aes(x = season, y = median.exp_attr, ymin = q025.exp_attr, ymax = q975.exp_attr),
position = position_dodge(width = 0.3)
)
q <- q + ggtitle("Attributable mortality due to ILI in Norway according to 2 models")
q <- q + scale_y_continuous("Estimated attributable mortality")
q <- q + theme(axis.text.x = element_text(angle = 90),axis.title.x=element_blank())
q <- q + labs(caption = glue::glue("Aggregated county model: Attributable mortality modeled on a county level before beeing aggregated up to a national level.\n National model: Attributable mortality modeled on a national level."))
q
Comparing cumulative sums over seasons
When operating on the national level, we prefer to aggregate the county model to national level (instead of using the national model). This ensures consistent results at all geographical levels.
aggregated_county_to_nation <- est_attrib_county_long[, .(
"sim_value_exposures=observed" = sum(`sim_value_exposures=observed`),
value = sum(value),
deaths_n = sum(deaths_n)
), keyby = .(season, seasonweek, isoweek, attr, sim_id)]
aggregated_county_to_nation[, exp_attr:= (`sim_value_exposures=observed` - value)]
aggregated_county_to_nation[, exp_irr:= (`sim_value_exposures=observed` /value)]
head(aggregated_county_to_nation,5)
#> season seasonweek isoweek attr sim_id
#> 1: 2009/2010 1 30 sim_value_heatwavedays_n=0 1
#> 2: 2009/2010 1 30 sim_value_heatwavedays_n=0 2
#> 3: 2009/2010 1 30 sim_value_heatwavedays_n=0 3
#> 4: 2009/2010 1 30 sim_value_heatwavedays_n=0 4
#> 5: 2009/2010 1 30 sim_value_heatwavedays_n=0 5
#> sim_value_exposures=observed value deaths_n exp_attr exp_irr
#> 1: 795.9332 756.1033 827 39.82988 1.052678
#> 2: 793.1994 753.1721 827 40.02732 1.053145
#> 3: 795.7832 756.8796 827 38.90361 1.051400
#> 4: 799.1747 756.9236 827 42.25109 1.055819
#> 5: 796.2747 759.3665 827 36.90824 1.048604
Again we compute the quantiles.
col_names <- colnames(aggregated_county_to_nation)
data.table::setkeyv(aggregated_county_to_nation, col_names[!col_names %in% c("exp_attr", "exp_irr","sim_id", "exposures", "sim_value_exposures=observed", "value")])
aggregated_county_to_nation_weekly <- aggregated_county_to_nation[,
unlist(recursive = FALSE, lapply(.(median = median, q025 = q025, q975 = q975),
function(f) lapply(.SD, f)
)),
by=eval(data.table::key(aggregated_county_to_nation)),
.SDcols = c("exp_attr", "exp_irr")]
We then estimate the cumulative sums of attributable mortality and corresponding credible intervals.
aggregated_county_to_nation_weekly[, cumsum := cumsum(median.exp_attr), by = .( attr, season)]
aggregated_county_to_nation_weekly[, cumsum_q025 := cumsum(q025.exp_attr), by = .( attr, season)]
aggregated_county_to_nation_weekly[, cumsum_q975 := cumsum(q975.exp_attr), by = .( attr, season)]
head(aggregated_county_to_nation_weekly, 5)
#> season seasonweek isoweek attr deaths_n
#> 1: 2009/2010 1 30 sim_value_heatwavedays_n=0 827
#> 2: 2009/2010 1 30 sim_value_ili_isoweekmean7_13_pr100=0 827
#> 3: 2009/2010 2 31 sim_value_heatwavedays_n=0 751
#> 4: 2009/2010 2 31 sim_value_ili_isoweekmean7_13_pr100=0 751
#> 5: 2009/2010 3 32 sim_value_heatwavedays_n=0 811
#> median.exp_attr median.exp_irr q025.exp_attr q025.exp_irr q975.exp_attr
#> 1: 3.920098e+01 1.051780 3.592665e+01 1.047135 4.151626e+01
#> 2: 0.000000e+00 1.000000 0.000000e+00 1.000000 0.000000e+00
#> 3: 2.677177e+01 1.035303 2.463374e+01 1.032264 2.832150e+01
#> 4: 1.764821e-05 1.000000 1.478760e-05 1.000000 2.024037e-05
#> 5: 2.192481e+01 1.028834 2.012051e+01 1.026283 2.320863e+01
#> q975.exp_irr cumsum cumsum_q025 cumsum_q975
#> 1: 1.054920 3.920098e+01 3.592665e+01 4.151626e+01
#> 2: 1.000000 0.000000e+00 0.000000e+00 0.000000e+00
#> 3: 1.037365 6.597275e+01 6.056040e+01 6.983776e+01
#> 4: 1.000000 1.764821e-05 1.478760e-05 2.024037e-05
#> 5: 1.030544 8.789756e+01 8.068091e+01 9.304639e+01
We can then plot the estimated cumulative attributable mortality over influenza seasons in Norway
library(ggplot2)
q <- ggplot(
data = aggregated_county_to_nation_weekly[
season %in% c(
"2015/2016",
"2016/2017",
"2017/2018",
"2018/2019",
"2019/2020"
) &
attr == "sim_value_ili_isoweekmean7_13_pr100=0"
],
aes(
x = seasonweek,
y = cumsum,
group = season,
color = season,
fill = season
)
)
q <- q + geom_line()
q <- q + geom_ribbon(
data = aggregated_county_to_nation_weekly[
season %in% c("2019/2020") &
attr == "sim_value_ili_isoweekmean7_13_pr100=0"
],
aes(
ymin = cumsum_q025,
ymax = cumsum_q975
),
alpha = 0.4,
colour = NA
)
q <- q + scale_y_continuous("Estimated cumulative attributable mortality")
q <- q + ggtitle("Estimated cumulative attributable mortality over influenza seasons in Norway")
q
We can also plot the estimated weekly attributable mortality in Norway
q <- ggplot(
data = aggregated_county_to_nation_weekly[attr == "sim_value_ili_isoweekmean7_13_pr100=0"],
aes(x = seasonweek, y = cumsum, group = season)
)
q <- q + geom_line(
data = aggregated_county_to_nation_weekly[
season != "2019/2020" &
attr == "sim_value_ili_isoweekmean7_13_pr100=0"
],
aes(
x = seasonweek,
y = median.exp_attr,
group = season
),
color = "grey"
)
q <- q + geom_line(
data = aggregated_county_to_nation_weekly[
season == "2019/2020" &
attr == "sim_value_ili_isoweekmean7_13_pr100=0"
],
aes(
x = seasonweek,
y = median.exp_attr,
group = season
),
color = "blue"
)
q <- q + geom_ribbon(
data = aggregated_county_to_nation_weekly[
season == "2019/2020" &
attr == "sim_value_ili_isoweekmean7_13_pr100=0"
],
aes(
x = seasonweek,
ymin = q025.exp_attr,
ymax = q975.exp_attr
),
fill = "blue",
alpha=0.4
)
q <- q + scale_y_continuous("Estimated attributable mortality")
q <- q + ggtitle("Estimated mortality due to ILI per week")
q
Incident rate ratio
Until now we have focused on estimating attributable mortality. Now we will investigate computing the incident rate ratio (IRR) for ili_isoweekmean7_13_pr100. To do this we will use the fit made by fit_attrib
on the county dataset but we will change the values for ili_isoweekmean7_13_pr100 to 1 (IRRs are generally expressed as the effect of the exposure changing from 0 to 1).
data_fake_county_irr <- data.table::copy(data_fake_county)
data_fake_county_irr[, ili_isoweekmean7_13_pr100 := 1]
head(data_fake_county_irr, 5)
#> location_code isoyear isoweek isoyearweek season seasonweek pop_jan1_n
#> 1: county_nor03 2010 1 2010-01 2009/2010 24 693494
#> 2: county_nor03 2011 1 2011-01 2010/2011 24 693494
#> 3: county_nor03 2012 1 2012-01 2011/2012 24 693494
#> 4: county_nor03 2013 1 2013-01 2012/2013 24 693494
#> 5: county_nor03 2014 1 2014-01 2013/2014 24 693494
#> ili_isoweekmean0_6_pr100 ili_isoweekmean7_13_pr100 heatwavedays_n deaths_n
#> 1: 0.9231202 1 0 112
#> 2: 1.8997241 1 0 113
#> 3: 1.3924947 1 0 128
#> 4: 0.9296033 1 0 126
#> 5: 1.3933639 1 0 115
Then we can set the reference value to zero and hence obtain the IRR for the given exposure.
exposures_irr = c(ili_isoweekmean7_13_pr100 = 0)
Now we use est_attrib
to create the simulations.
est_attrib_sim_county_irr <- attrib::est_attrib(
fit_county,
data_fake_county_irr,
exposures = exposures_irr,
n_sim = 100
)
head(est_attrib_sim_county_irr, 5)
#> location_code isoyear isoweek isoyearweek season seasonweek pop_jan1_n
#> 1: county_nor03 2010 1 2010-01 2009/2010 24 693494
#> 2: county_nor03 2011 1 2011-01 2010/2011 24 693494
#> 3: county_nor03 2012 1 2012-01 2011/2012 24 693494
#> 4: county_nor03 2013 1 2013-01 2012/2013 24 693494
#> 5: county_nor03 2014 1 2014-01 2013/2014 24 693494
#> ili_isoweekmean0_6_pr100 ili_isoweekmean7_13_pr100 heatwavedays_n deaths_n
#> 1: 0.9231202 1 0 112
#> 2: 1.8997241 1 0 113
#> 3: 1.3924947 1 0 128
#> 4: 0.9296033 1 0 126
#> 5: 1.3933639 1 0 115
#> id sim_id sim_value_exposures=observed sim_value_ili_isoweekmean7_13_pr100=0
#> 1: 1 1 115.3170 111.2943
#> 2: 2 1 114.2410 110.4032
#> 3: 3 1 114.9164 110.7583
#> 4: 4 1 115.1033 111.3208
#> 5: 5 1 115.2641 110.6639
We see we have obtained values for the reference of the exposure in the same way as before. The difference is that we changed the dataset before running est_attrib. This means we will now be observing the difference between ili_isoweekmean7_13_pr100=0
and ili_isoweekmean7_13_pr100=1
.
We now aggregate to the national seasonal level.
aggregated_county_to_nation_sim_irr <- est_attrib_sim_county_irr[, .(
"sim_value_exposures=observed" = sum(`sim_value_exposures=observed`),
"sim_value_ili_isoweekmean7_13_pr100=0"= sum(`sim_value_ili_isoweekmean7_13_pr100=0`),
deaths_n = sum(deaths_n)
), keyby = .(season, sim_id)]
Here we generate the IRR:
aggregated_county_to_nation_sim_irr[, exp_irr:= (`sim_value_exposures=observed`/`sim_value_ili_isoweekmean7_13_pr100=0`
)]
head(aggregated_county_to_nation_sim_irr,5)
#> season sim_id sim_value_exposures=observed
#> 1: 2009/2010 1 44886.03
#> 2: 2009/2010 2 45320.95
#> 3: 2009/2010 3 44887.11
#> 4: 2009/2010 4 44805.09
#> 5: 2009/2010 5 44764.76
#> sim_value_ili_isoweekmean7_13_pr100=0 deaths_n exp_irr
#> 1: 43320.22 44006 1.036145
#> 2: 43692.56 44006 1.037269
#> 3: 43268.11 44006 1.037418
#> 4: 43302.97 44006 1.034689
#> 5: 43445.40 44006 1.030368
Now we can compute the quantiles:
col_names <- colnames(aggregated_county_to_nation_sim_irr)
data.table::setkeyv(
aggregated_county_to_nation_sim_irr,
col_names[!col_names %in% c("exp_irr", "sim_id", "sim_value_exposures=observed", "sim_value_ili_isoweekmean7_13_pr100=0")]
)
aggregated_county_to_nation_irr <- aggregated_county_to_nation_sim_irr[,
unlist(recursive = FALSE, lapply(.(median = median, q025 = q025, q975 = q975), function(f) lapply(.SD, f))),
by = eval(data.table::key(aggregated_county_to_nation_sim_irr)),
.SDcols = c("exp_irr")
]
aggregated_county_to_nation_irr[, tag := "aggregated"]
aggregated_county_to_nation_irr
#> season deaths_n median.exp_irr q025.exp_irr q975.exp_irr tag
#> 1: 2009/2010 44006 1.034132 1.025996 1.040939 aggregated
#> 2: 2010/2011 43316 1.032751 1.024625 1.039549 aggregated
#> 3: 2011/2012 43221 1.035526 1.027379 1.042343 aggregated
#> 4: 2012/2013 43020 1.031969 1.023850 1.038763 aggregated
#> 5: 2013/2014 43309 1.039546 1.031367 1.046389 aggregated
#> 6: 2014/2015 43234 1.032061 1.023941 1.038855 aggregated
#> 7: 2015/2016 44320 1.038013 1.029846 1.044846 aggregated
#> 8: 2016/2017 43468 1.032451 1.024328 1.039247 aggregated
#> 9: 2017/2018 43438 1.038708 1.030536 1.045546 aggregated
#> 10: 2018/2019 43350 1.030212 1.022107 1.036994 aggregated
#> 11: 2019/2020 43707 1.035689 1.027540 1.042506 aggregated
Now we compare the resulting values for IRR with the ones obtained by coef(fit_county)$season
and the 90 percent credible interval computed manually using the standard deviation given by summary(fit_county) for ili_isoweekmean7_13_pr100.
coef_fit_county <- data.table::as.data.table(coef(fit_county)$season)
col_names_coef <- c("ili_isoweekmean7_13_pr100")
coef_irr_data <- coef_fit_county[, ..col_names_coef]
coef_irr_data[, irr := exp(ili_isoweekmean7_13_pr100)]
coef_irr_data[, q025 := exp(ili_isoweekmean7_13_pr100 - 1.96 *0.003761)] # 0.003761 is the standard deviation from coef(fit_county)
coef_irr_data[, q975 := exp(ili_isoweekmean7_13_pr100 + 1.96 *0.003761)]
coef_irr_data[, tag := "from_coef"]
coef_irr_data
#> ili_isoweekmean7_13_pr100 irr q025 q975 tag
#> 1: 0.03380077 1.034379 1.026782 1.042032 from_coef
#> 2: 0.03246441 1.032997 1.025410 1.040640 from_coef
#> 3: 0.03514786 1.035773 1.028166 1.043436 from_coef
#> 4: 0.03170748 1.032216 1.024634 1.039853 from_coef
#> 5: 0.03902228 1.039794 1.032157 1.047487 from_coef
#> 6: 0.03179648 1.032307 1.024726 1.039945 from_coef
#> 7: 0.03754698 1.038261 1.030635 1.045943 from_coef
#> 8: 0.03217375 1.032697 1.025112 1.040338 from_coef
#> 9: 0.03821602 1.038956 1.031325 1.046643 from_coef
#> 10: 0.03000346 1.030458 1.022890 1.038082 from_coef
#> 11: 0.03530514 1.035936 1.028327 1.043600 from_coef
Add the correct seasons to the data.
coef_irr_data <- cbind(season = aggregated_county_to_nation_irr$season, coef_irr_data)
coef_irr_data
#> season ili_isoweekmean7_13_pr100 irr q025 q975 tag
#> 1: 2009/2010 0.03380077 1.034379 1.026782 1.042032 from_coef
#> 2: 2010/2011 0.03246441 1.032997 1.025410 1.040640 from_coef
#> 3: 2011/2012 0.03514786 1.035773 1.028166 1.043436 from_coef
#> 4: 2012/2013 0.03170748 1.032216 1.024634 1.039853 from_coef
#> 5: 2013/2014 0.03902228 1.039794 1.032157 1.047487 from_coef
#> 6: 2014/2015 0.03179648 1.032307 1.024726 1.039945 from_coef
#> 7: 2015/2016 0.03754698 1.038261 1.030635 1.045943 from_coef
#> 8: 2016/2017 0.03217375 1.032697 1.025112 1.040338 from_coef
#> 9: 2017/2018 0.03821602 1.038956 1.031325 1.046643 from_coef
#> 10: 2018/2019 0.03000346 1.030458 1.022890 1.038082 from_coef
#> 11: 2019/2020 0.03530514 1.035936 1.028327 1.043600 from_coef
rbindlist the two datasets together.
total_data_irr <- data.table::rbindlist(list(coef_irr_data, aggregated_county_to_nation_irr), use.names = FALSE)
total_data_irr[, ili_isoweekmean7_13_pr100 := NULL]
total_data_irr
#> season irr q025 q975 tag
#> 1: 2009/2010 1.034379 1.026782 1.042032 from_coef
#> 2: 2010/2011 1.032997 1.025410 1.040640 from_coef
#> 3: 2011/2012 1.035773 1.028166 1.043436 from_coef
#> 4: 2012/2013 1.032216 1.024634 1.039853 from_coef
#> 5: 2013/2014 1.039794 1.032157 1.047487 from_coef
#> 6: 2014/2015 1.032307 1.024726 1.039945 from_coef
#> 7: 2015/2016 1.038261 1.030635 1.045943 from_coef
#> 8: 2016/2017 1.032697 1.025112 1.040338 from_coef
#> 9: 2017/2018 1.038956 1.031325 1.046643 from_coef
#> 10: 2018/2019 1.030458 1.022890 1.038082 from_coef
#> 11: 2019/2020 1.035936 1.028327 1.043600 from_coef
#> 12: 2009/2010 1.034132 1.025996 1.040939 aggregated
#> 13: 2010/2011 1.032751 1.024625 1.039549 aggregated
#> 14: 2011/2012 1.035526 1.027379 1.042343 aggregated
#> 15: 2012/2013 1.031969 1.023850 1.038763 aggregated
#> 16: 2013/2014 1.039546 1.031367 1.046389 aggregated
#> 17: 2014/2015 1.032061 1.023941 1.038855 aggregated
#> 18: 2015/2016 1.038013 1.029846 1.044846 aggregated
#> 19: 2016/2017 1.032451 1.024328 1.039247 aggregated
#> 20: 2017/2018 1.038708 1.030536 1.045546 aggregated
#> 21: 2018/2019 1.030212 1.022107 1.036994 aggregated
#> 22: 2019/2020 1.035689 1.027540 1.042506 aggregated
#> season irr q025 q975 tag
q <- ggplot(
data = total_data_irr,
aes(
x = season,
group = tag,
color = tag
)
)
q <- q + geom_pointrange(
aes(
y = irr,
ymin = q025,
ymax = q975
),
position = position_dodge(width = 0.3)
)
q <- q + theme(axis.text.x = element_text(angle = 90),axis.title.x=element_blank())
q <- q + labs(y = "Incident risk ratio")
q <- q + ggtitle("Incident risk ratio for ILI per season")
q
As we can see these intervals are very similar.
The benefit of the simulated approach is that this process will be equally easy no matter the complexity of what we want to compute the IRR for. We do not have to take into account the variance-covariance matrix at any stage.