Skip to contents

Definitions

Object Description
argset A named list containing arguments.
plnr analysis These are the fundamental units that are scheduled in plnr:
  • 1 argset
  • 1 function that takes two (or more) arguments:
    • data (named list)
    • argset (named list)
    • … (optional arguments)
data_selector_fn A function that takes two arguments:
  • argset (named list)
  • tables (named list)
This function provides a named list to be used as the data argument to action_fn
action_fn A function that takes three arguments:
  • data (named list, returned from data_selector_fn)
  • argset (named list)
  • tables (named list)
This is the thing that ‘does stuff’ in Core Surveillance 9.
sc analysis A sc analysis is essentially a plnr analysis with database tables:
  • 1 argset
  • 1 action_fn
plan
  • 1 data-pull (using data_selector_fn)
  • 1 list of sc analyses
task This is is the unit that Airflow schedules.
  • 1 list of plans
We sometimes run the list of plans in parallel.

Tasks

A task is the basic operational unit of cs9. It is based on plnr.

In short, you can think of a task as multiple plnr plans plus csdb tables.

Figure 1. A general task showing the many options of a task.

Figure 1 shows us the full potential of a task.

Data can be read from any sources, then within a plan the data will be extracted once by data_selector_fn (i.e. “one data-pull”). The data will then be provided to each analysis, which will run action_fn on:

  • The provided data
  • The provided argset
  • The provided tables

The action_fn can then:

  • Write data/results to db tables
  • Send emails
  • Export graphs, excel files, reports, or other physical files

Typically only a subset of this would be done in a single task.

Plan-heavy or analysis-heavy tasks?

A plan-heavy task is one that has many plans and a few analyses per plan.

An analysis-heavy task is one that has few plans and many analyses per plan.

In general, a data-pull is slow and wastes time. This means that it is preferable to reduce the number of data-pulls performed by having each data-pull extract larger quantities of data. The analysis can then subset the data as required (identifed via argsets). i.e. If possible, an analysis-heavy task is preferable because it will be faster (at the cost of needing more RAM).

Obviously, if a plan’s data-pull is larger, it will use more RAM. If you need to conserve RAM, then you should use a plan-heavy approach.

Figure 1 shows only 2 location based analyses, but in reality there are 356 municipalities in Norway in 2021. If figure 1 had 2 plans (1 for 2021 data, 1 for 2020 data) and 356 analyses for each plan (1 for each location_code) then we would be taking an analysis-heavy approach.

Putting it together

Figure 2. A typical file setup for an implementation of Core Surveillance 9. planargsetfnplan_argset_fn is rarely used, and is therefore shown as blacked out in the most of the tasks..

Figure 2 shows a typical implementation of Core Surveillance 9.

config_db.r contains all of the Core Surveillance 9 db tables definitions. i.e. A long list of sc::add_schema_v8 commands.

config_tasks.r contains all of the task definitions. i.e. A long list of sc::add_task_from_config_v8 commands.

Then we have a one file for each task that contains the action_fn, data_selector_fn and other functions that are relevant to the task at hand.

Example

We will now go through an example of how a person would design and implement tasks relating to weather

Surveillance system

We begin by creating a surveillance system. This is the hub that coordinates everything.

ss <- cs9::SurveillanceSystem_v9$new()

add_table

As documented in more detail here, we create a database table that fits our needs (recording weather data), and we then add it to the surveillance system.

#> Error in knitr::include_graphics(system.file("vignette_resources/tasks/addins_1.png", : Cannot find the file(s): ""
ss$add_table(
  name_access = c("anon"),
  name_grouping = "example_weather",
  name_variant = NULL,
  field_types =  c(
    "granularity_time" = "TEXT",
    "granularity_geo" = "TEXT",
    "country_iso3" = "TEXT",
    "location_code" = "TEXT",
    "border" = "INTEGER",
    "age" = "TEXT",
    "sex" = "TEXT",

    "isoyear" = "INTEGER",
    "isoweek" = "INTEGER",
    "isoyearweek" = "TEXT",
    "season" = "TEXT",
    "seasonweek" = "DOUBLE",

    "calyear" = "INTEGER",
    "calmonth" = "INTEGER",
    "calyearmonth" = "TEXT",

    "date" = "DATE",

    "tg" = "DOUBLE",
    "tx" = "DOUBLE",
    "tn" = "DOUBLE"
  ),
  keys = c(
    "granularity_time",
    "location_code",
    "date",
    "age",
    "sex"
  ),
  validator_field_types = csdb::validator_field_types_csfmt_rts_data_v1,
  validator_field_contents = csdb::validator_field_contents_csfmt_rts_data_v1
)

add_task

To “register” our task, we use the RStudio addin task_from_config.

#> Error in knitr::include_graphics(system.file("vignette_resources/tasks/addins_2.png", : Cannot find the file(s): ""
# tm_run_task("example_weather_import_data_from_api")
ss$add_task(
  name_grouping = "example_weather",
  name_action = "import_data_from_api",
  name_variant = NULL,
  cores = 1,
  plan_analysis_fn_name = NULL, # "PACKAGE::TASK_NAME_plan_analysis"
  for_each_plan = plnr::expand_list(
    location_code = "county03" # fhidata::norway_locations_names()[granularity_geo %in% c("county")]$location_code
  ),
  for_each_analysis = NULL,
  universal_argset = NULL,
  upsert_at_end_of_each_plan = FALSE,
  insert_at_end_of_each_plan = FALSE,
  action_fn_name = "example_weather_import_data_from_api_action",
  data_selector_fn_name = "example_weather_import_data_from_api_data_selector",
  tables = list(
    # input

    # output
    "anon_example_weather" = ss$tables$anon_example_weather
  )
)

There are a number of important things in this code that need highlighting.

for_each_plan

for_each_plan expects a list. Each component of the list will correspond to a plan, with the values added to the argset of all the analyses inside the plan.

For example, the following code would give 4 plans, with 1 analysis per each plan, with each analysis containing argset$var_1 and argset$var_2 as appropriate.

for_each_plan <- list()
for_each_plan[[1]] <- list(
  var_1 = 1,
  var_2 = "a"
)
for_each_plan[[2]] <- list(
  var_1 = 2,
  var_2 = "b"
)
for_each_plan[[3]] <- list(
  var_1 = 1,
  var_2 = "a"
)
for_each_plan[[4]] <- list(
  var_1 = 2,
  var_2 = "b"
)

You always need at least 1 plan. The most simple plan possible is:

plnr::expand_list(
  x = 1
)
#> [[1]]
#> [[1]]$x
#> [1] 1

plnr::expand_list

plnr::expand_list is esentially the same as expand.grid, except that its return values are lists instead of data.frame.

The code above could be simplified as follows.

for_each_plan <- plnr::expand_list(
  var_1 = c(1,2),
  var_2 = c("a", "b")
)
for_each_plan
#> [[1]]
#> [[1]]$var_1
#> [1] 1
#> 
#> [[1]]$var_2
#> [1] "a"
#> 
#> 
#> [[2]]
#> [[2]]$var_1
#> [1] 2
#> 
#> [[2]]$var_2
#> [1] "a"
#> 
#> 
#> [[3]]
#> [[3]]$var_1
#> [1] 1
#> 
#> [[3]]$var_2
#> [1] "b"
#> 
#> 
#> [[4]]
#> [[4]]$var_1
#> [1] 2
#> 
#> [[4]]$var_2
#> [1] "b"

for_each_analysis

for_each_plan expects a list, which will generate length(for_each_plan) plans.

for_each_analysis is the same, except it will generate analyses within each of the plans.

universal_argset

A named list that will add the values to the argset of all the analyses.

upsert_at_end_of_each_plan

If TRUE and tables contains a table called output, then the returned values of action_fn will be stored and upserted to tables$output at the end of each plan.

If TRUE and the returned values of action_fn are named lists, then the values within the named lists will be stored and upserted to tables$NAME_FROM_LIST at the end of each plan.

If you choose to upsert/insert manually from within action_fn, you can only do so at the end of each analysis.

insert_at_end_of_each_plan

If TRUE and tables contains a table called output, then the returned values of action_fn will be stored and inserted to tables$output at the end of each plan.

If TRUE and the returned values of action_fn are named lists, then the values within the named lists will be stored and inserted to tables$NAME_FROM_LIST at the end of each plan.

If you choose to upsert/insert manually from within action_fn, you can only do so at the end of each analysis.

action_fn_name

A character string of the action_fn, preferably including the package name.

data_selector_fn_name

A character string of the data_selector_fn, preferably including the package name.

schema

A named list containing the schemas used in this task.

data_selector_fn

Use the addins dropdown to easily add in boilerplate code.

#> Error in knitr::include_graphics(system.file("vignette_resources/tasks/addins_3.png", : Cannot find the file(s): ""

The data_selector_fn is used to extract the data for each plan.

The lines inside if(plnr::is_run_directly()){ are used to help developers. You can run the code manually/interactively to “load” the values of argset and schema.

index_plan <- 1

argset <- ss$shortcut_get_argset("example_weather_import_data_from_api", index_plan = index_plan)
tables <- ss$shortcut_get_tables("example_weather_import_data_from_api")

print(argset)
#> $`**universal**`
#> [1] "*"
#> 
#> $`**plan**`
#> [1] "*"
#> 
#> $location_code
#> [1] "county03"
#> 
#> $`**analysis**`
#> [1] "*"
#> 
#> $`**automatic**`
#> [1] "*"
#> 
#> $index
#> [1] 1
#> 
#> $today
#> [1] "2024-05-27"
#> 
#> $yesterday
#> [1] "2024-05-26"
#> 
#> $index_plan
#> [1] 1
#> 
#> $index_analysis
#> [1] 1
#> 
#> $first_analysis
#> [1] TRUE
#> 
#> $last_analysis
#> [1] TRUE
#> 
#> $within_plan_first_analysis
#> [1] TRUE
#> 
#> $within_plan_last_analysis
#> [1] TRUE
print(tables)
#> $anon_example_weather
#> Error in cat(self$table_name_fully_specified, crayon::bgRed(crayon::white("(disconnected)\n\n"))): argument 1 (type 'S4') cannot be handled by 'cat'
# **** data_selector **** ----
#' example_weather_import_data_from_api (data selector)
#' @param argset Argset
#' @param tables DB tables
#' @export
example_weather_import_data_from_api_data_selector = function(argset, tables){
  if(plnr::is_run_directly()){
    # sc::tm_get_plans_argsets_as_dt("example_weather_import_data_from_api")

    index_plan <- 1

    argset <- ss$shortcut_get_argset("example_weather_import_data_from_api", index_plan = index_plan)
    tables <- ss$shortcut_get_tables("example_weather_import_data_from_api")
  }

  # find the mid lat/long for the specified location_code
  gps <- fhimaps::norway_nuts3_map_b2020_default_dt[location_code == argset$location_code,.(
    lat = mean(lat),
    long = mean(long)
  )]

  # download the forecast for the specified location_code
  d <- httr::GET(glue::glue("https://api.met.no/weatherapi/locationforecast/2.0/classic?lat={gps$lat}&lon={gps$long}"), httr::content_type_xml())
  d <- xml2::read_xml(d$content)

  # The variable returned must be a named list
  retval <- list(
    "data" = d
  )
  retval
}

action_fn

The lines inside if(plnr::is_run_directly()){ are used to help developers. You can run the code manually/interactively to “load” the values of argset and schema.

index_plan <- 1
index_analysis <- 1

data <- ss$shortcut_get_data("example_weather_import_data_from_api", index_plan = index_plan)
argset <- ss$shortcut_get_argset("example_weather_import_data_from_api", index_plan = index_plan, index_analysis = index_analysis)
tables <- ss$shortcut_get_tables("example_weather_import_data_from_api")

print(data)
#> $data
#> {xml_document}
#> <weatherdata noNamespaceSchemaLocation="https://schema.api.met.no/schemas/weatherapi-0.4.xsd" created="2024-05-27T14:11:08Z" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
#> [1] <meta>\n  <model name="met_public_forecast" termin="2024-05-27T14 ...
#> [2] <product class="pointData">\n  <time datatype="forecast" from="20 ...
#> 
#> $hash
#> $hash$current
#> [1] "fa7c1fd90a6d9bf24040ae24919e6972"
#> 
#> $hash$current_elements
#> $hash$current_elements$data
#> [1] "edf868d91cd1f5fe47b57b2aeb1d010d"
print(argset)
#> $`**universal**`
#> [1] "*"
#> 
#> $`**plan**`
#> [1] "*"
#> 
#> $location_code
#> [1] "county03"
#> 
#> $`**analysis**`
#> [1] "*"
#> 
#> $`**automatic**`
#> [1] "*"
#> 
#> $index
#> [1] 1
#> 
#> $today
#> [1] "2024-05-27"
#> 
#> $yesterday
#> [1] "2024-05-26"
#> 
#> $index_plan
#> [1] 1
#> 
#> $index_analysis
#> [1] 1
#> 
#> $first_analysis
#> [1] TRUE
#> 
#> $last_analysis
#> [1] TRUE
#> 
#> $within_plan_first_analysis
#> [1] TRUE
#> 
#> $within_plan_last_analysis
#> [1] TRUE
print(tables)
#> $anon_example_weather
#> Error in cat(self$table_name_fully_specified, crayon::bgRed(crayon::white("(disconnected)\n\n"))): argument 1 (type 'S4') cannot be handled by 'cat'
# **** action **** ----
#' example_weather_import_data_from_api (action)
#' @param data Data
#' @param argset Argset
#' @param tables DB tables
#' @export
example_weather_import_data_from_api_action <- function(data, argset, tables) {
  # tm_run_task("example_weather_import_data_from_api")

  if(plnr::is_run_directly()){
    # sc::tm_get_plans_argsets_as_dt("example_weather_import_data_from_api")

    index_plan <- 1
    index_analysis <- 1

    data <- ss$shortcut_get_data("example_weather_import_data_from_api", index_plan = index_plan)
    argset <- ss$shortcut_get_argset("example_weather_import_data_from_api", index_plan = index_plan, index_analysis = index_analysis)
    tables <- ss$shortcut_get_tables("example_weather_import_data_from_api")
  }

  # code goes here
  # special case that runs before everything
  if(argset$first_analysis == TRUE){

  }

  a <- data$data

  baz <- xml2::xml_find_all(a, ".//maxTemperature")
  res <- vector("list", length = length(baz))
  for (i in seq_along(baz)) {
    parent <- xml2::xml_parent(baz[[i]])
    grandparent <- xml2::xml_parent(parent)
    time_from <- xml2::xml_attr(grandparent, "from")
    time_to <- xml2::xml_attr(grandparent, "to")
    x <- xml2::xml_find_all(parent, ".//minTemperature")
    temp_min <- xml2::xml_attr(x, "value")
    x <- xml2::xml_find_all(parent, ".//maxTemperature")
    temp_max <- xml2::xml_attr(x, "value")
    res[[i]] <- data.frame(
      time_from = as.character(time_from),
      time_to = as.character(time_to),
      tx = as.numeric(temp_max),
      tn = as.numeric(temp_min)
    )
  }
  res <- rbindlist(res)
  res <- res[stringr::str_sub(time_from, 12, 13) %in% c("00", "06", "12", "18")]
  res[, date := as.Date(stringr::str_sub(time_from, 1, 10))]
  res[, N := .N, by = date]
  res <- res[N == 4]
  res <- res[
    ,
    .(
      tg = NA,
      tx = max(tx),
      tn = min(tn)
    ),
    keyby = .(date)
  ]

  # we look at the downloaded data
  print("Data after downloading")
  print(res)

  # we now need to format it
  res[, granularity_time := "day"]
  res[, sex := "total"]
  res[, age := "total"]
  res[, location_code := argset$location_code]
  res[, border := 2020]

  # fill in missing structural variables
  cstidy::set_csfmt_rts_data_v1(res)

  # we look at the downloaded data
  print("Data after missing structural variables filled in")
  print(res)

  # put data in db table
  # tables$TABLE_NAME$insert_data(d)
  tables$anon_example_weather$upsert_data(res)
  # tables$TABLE_NAME$drop_all_rows_and_then_upsert_data(d)

  # special case that runs after everything
  # copy to anon_web?
  if(argset$last_analysis == TRUE){
    # sc::copy_into_new_table_where(
    #   table_from = "anon_X",
    #   table_to = "anon_web_X"
    # )
  }
}

Run the task

ss$run_task("example_weather_import_data_from_api")
#> task: example_weather_import_data_from_api
#> Running task=example_weather_import_data_from_api with plans=1 and analyses=1
#> plans=sequential, argset=sequential with cores=1
#> Creating table config_data_hash_for_each_plan
#> [1] "CREATE TABLE dbo.\"config_data_hash_for_each_plan\" (\n  \"task\" VARCHAR NOT NULL,\n  \"index_plan\" INTEGER NOT NULL,\n  \"element_tag\" VARCHAR NOT NULL,\n  \"date\" DATE NOT NULL,\n  \"datetime\" TIMESTAMP NOT NULL,\n  \"element_hash\" VARCHAR,\n  \"all_hash\" VARCHAR\n)\n"
#> Error: nanodbc/nanodbc.cpp:1771: 00000
#> ERROR: schema "dbo" does not exist;
#> Error while executing the query 
#>  RROR: schema "dbo" does not exist;
#> Error while executing the query 
#> <SQL> 'CREATE TABLE dbo."config_data_hash_for_each_plan" (
#>   "task" VARCHAR NOT NULL,
#>   "index_plan" INTEGER NOT NULL,
#>   "element_tag" VARCHAR NOT NULL,
#>   "date" DATE NOT NULL,
#>   "datetime" TIMESTAMP NOT NULL,
#>   "element_hash" VARCHAR,
#>   "all_hash" VARCHAR
#> )
#> '
#> Creating table config_tasks_stats
#> [1] "CREATE TABLE dbo.\"config_tasks_stats\" (\n  \"task\" VARCHAR NOT NULL,\n  \"sc_version\" VARCHAR,\n  \"implementation_version\" VARCHAR,\n  \"cores_n\" INTEGER,\n  \"plans_n\" INTEGER,\n  \"analyses_n\" INTEGER,\n  \"start_date\" DATE,\n  \"start_datetime\" TIMESTAMP NOT NULL,\n  \"stop_date\" DATE,\n  \"stop_datetime\" TIMESTAMP,\n  \"runtime_minutes\" REAL,\n  \"ram_all_cores_mb\" REAL,\n  \"ram_per_core_mb\" REAL,\n  \"status\" VARCHAR\n)\n"
#> Error: nanodbc/nanodbc.cpp:1771: 00000
#> ERROR: schema "dbo" does not exist;
#> Error while executing the query 
#>  RROR: schema "dbo" does not exist;
#> Error while executing the query 
#> <SQL> 'CREATE TABLE dbo."config_tasks_stats" (
#>   "task" VARCHAR NOT NULL,
#>   "sc_version" VARCHAR,
#>   "implementation_version" VARCHAR,
#>   "cores_n" INTEGER,
#>   "plans_n" INTEGER,
#>   "analyses_n" INTEGER,
#>   "start_date" DATE,
#>   "start_datetime" TIMESTAMP NOT NULL,
#>   "stop_date" DATE,
#>   "stop_datetime" TIMESTAMP,
#>   "runtime_minutes" REAL,
#>   "ram_all_cores_mb" REAL,
#>   "ram_per_core_mb" REAL,
#>   "status" VARCHAR
#> )
#> '

Different types of tasks

Importing data

ss$add_task(
  name_grouping = "example",
  name_action = "import_data",
  name_variant = NULL,
  cores = 1,
  plan_analysis_fn_name = NULL,
  for_each_plan = plnr::expand_list(
    x = 1
  ),
  for_each_analysis = NULL,
  universal_argset = list(
    folder = cs9::path("input", "example")
  ),
  upsert_at_end_of_each_plan = FALSE,
  insert_at_end_of_each_plan = FALSE,
  action_fn_name = "example_import_data_action",
  data_selector_fn_name = "example_import_data_data_selector",
  tables = list(
    # input

    # output
    "output" = ss$tables$output
  )
)

Analysis

ss$add_task(
  name_grouping = "example",
  name_action = "analysis",
  name_variant = NULL,
  cores = 1,
  plan_analysis_fn_name = NULL,
  for_each_plan = plnr::expand_list(
    location_code = csdata::nor_locations_names()[granularity_geo %in% c("county")]$location_code
  ),
  for_each_analysis = NULL,
  universal_argset = NULL,
  upsert_at_end_of_each_plan = FALSE,
  insert_at_end_of_each_plan = FALSE,
  action_fn_name = "example_analysis_action",
  data_selector_fn_name = "example_analysis_data_selector",
  tables = list(
    # input
    "input" = ss$tables$input,

    # output
    "output" = ss$tables
  )
)

Exporting multiple sets of results

ss$add_task(
  name_grouping = "example",
  name_action = "export_results",
  name_variant = NULL,
  cores = 1,
  plan_analysis_fn_name = NULL,
  for_each_plan = plnr::expand_list(
    location_code = csdata::nor_locations_names()[granularity_geo %in% c("county")]$location_code
  ),
  for_each_analysis = NULL,
  universal_argset = list(
    folder = cs9::path("output", "example")
  ),
  upsert_at_end_of_each_plan = FALSE,
  insert_at_end_of_each_plan = FALSE,
  action_fn_name = "example_export_results_action",
  data_selector_fn_name = "example_export_results_data_selector",
  tables = list(
    # input
    "input" = ss$tables$input

    # output
  )
)

Exporting combined results

ss$tables(
  name_grouping = "example",
  name_action = "export_results",
  name_variant = NULL,
  cores = 1,
  plan_analysis_fn_name = NULL,
  for_each_plan = plnr::expand_list(
    x = 1
  ),
  for_each_analysis = NULL,
  universal_argset = list(
    folder = cs9::path("output", "example"),
    granularity_geos = c("nation", "county")
  ),
  upsert_at_end_of_each_plan = FALSE,
  insert_at_end_of_each_plan = FALSE,
  action_fn_name = "example_export_results_action",
  data_selector_fn_name = "example_export_results_data_selector",
  tables = list(
    # input
    "input" = ss$tables$input

    # output
  )
)