Definitions
Object | Description |
---|---|
argset | A named list containing arguments. |
plnr analysis |
These are the fundamental units that are scheduled in plnr:
|
data_selector_fn |
A function that takes two arguments:
data argument to action_fn
|
action_fn |
A function that takes three arguments:
|
sc analysis |
A sc analysis is essentially a plnr analysis with database tables:
|
plan |
|
task |
This is is the unit that Airflow schedules.
|
Tasks
A task is the basic operational unit of sc9. It is based on plnr.
In short, you can think of a task as multiple plnr plans plus csdb tables.
Figure 1 shows us the full potential of a task.
Data can be read from any sources, then within a plan the data will be extracted once by data_selector_fn
(i.e. “one data-pull”). The data will then be provided to each analysis, which will run action_fn
on:
- The provided data
- The provided argset
- The provided tables
The action_fn
can then:
- Write data/results to db tables
- Send emails
- Export graphs, excel files, reports, or other physical files
Typically only a subset of this would be done in a single task.
Plan-heavy or analysis-heavy tasks?
A plan-heavy task is one that has many plans and a few analyses per plan.
An analysis-heavy task is one that has few plans and many analyses per plan.
In general, a data-pull is slow and wastes time. This means that it is preferable to reduce the number of data-pulls performed by having each data-pull extract larger quantities of data. The analysis can then subset the data as required (identifed via argsets). i.e. If possible, an analysis-heavy task is preferable because it will be faster (at the cost of needing more RAM).
Obviously, if a plan’s data-pull is larger, it will use more RAM. If you need to conserve RAM, then you should use a plan-heavy approach.
Figure 1 shows only 2 location based analyses, but in reality there are 356 municipalities in Norway in 2021. If figure 1 had 2 plans (1 for 2021 data, 1 for 2020 data) and 356 analyses for each plan (1 for each location_code) then we would be taking an analysis-heavy approach.
Putting it together
Figure 2 shows a typical implementation of Surveillance Core 9.
config_db.r
contains all of the Surveillance Core 9 db tables definitions. i.e. A long list of sc::add_schema_v8
commands.
config_tasks.r
contains all of the task definitions. i.e. A long list of sc::add_task_from_config_v8
commands.
Then we have a one file for each task that contains the action_fn
, data_selector_fn
and other functions that are relevant to the task at hand.
Example
We will now go through an example of how a person would design and implement tasks relating to weather
Surveillance system
We begin by creating a surveillance system. This is the hub that coordinates everything.
ss <- sc9::SurveillanceSystem_v9$new()
add_table
As documented in more detail here, we create a database table that fits our needs (recording weather data), and we then add it to the surveillance system.
#> Error in knitr::include_graphics(system.file("vignette_resources/tasks/addins_1.png", : Cannot find the file(s): ""
ss$add_table(
name_access = c("anon"),
name_grouping = "example_weather",
name_variant = NULL,
field_types = c(
"granularity_time" = "TEXT",
"granularity_geo" = "TEXT",
"country_iso3" = "TEXT",
"location_code" = "TEXT",
"border" = "INTEGER",
"age" = "TEXT",
"sex" = "TEXT",
"isoyear" = "INTEGER",
"isoweek" = "INTEGER",
"isoyearweek" = "TEXT",
"season" = "TEXT",
"seasonweek" = "DOUBLE",
"calyear" = "INTEGER",
"calmonth" = "INTEGER",
"calyearmonth" = "TEXT",
"date" = "DATE",
"tg" = "DOUBLE",
"tx" = "DOUBLE",
"tn" = "DOUBLE"
),
keys = c(
"granularity_time",
"location_code",
"date",
"age",
"sex"
),
validator_field_types = csdb::validator_field_types_csfmt_rts_data_v1,
validator_field_contents = csdb::validator_field_contents_csfmt_rts_data_v1
)
add_task
To “register” our task, we use the RStudio addin task_from_config
.
#> Error in knitr::include_graphics(system.file("vignette_resources/tasks/addins_2.png", : Cannot find the file(s): ""
# tm_run_task("example_weather_import_data_from_api")
ss$add_task(
name_grouping = "example_weather",
name_action = "import_data_from_api",
name_variant = NULL,
cores = 1,
plan_analysis_fn_name = NULL, # "PACKAGE::TASK_NAME_plan_analysis"
for_each_plan = plnr::expand_list(
location_code = "county03" # fhidata::norway_locations_names()[granularity_geo %in% c("county")]$location_code
),
for_each_analysis = NULL,
universal_argset = NULL,
upsert_at_end_of_each_plan = FALSE,
insert_at_end_of_each_plan = FALSE,
action_fn_name = "example_weather_import_data_from_api_action",
data_selector_fn_name = "example_weather_import_data_from_api_data_selector",
tables = list(
# input
# output
"anon_example_weather" = ss$tables$anon_example_weather
)
)
There are a number of important things in this code that need highlighting.
for_each_plan
for_each_plan
expects a list. Each component of the list will correspond to a plan, with the values added to the argset of all the analyses inside the plan.
For example, the following code would give 4 plans, with 1 analysis per each plan, with each analysis containing argset$var_1
and argset$var_2
as appropriate.
for_each_plan <- list()
for_each_plan[[1]] <- list(
var_1 = 1,
var_2 = "a"
)
for_each_plan[[2]] <- list(
var_1 = 2,
var_2 = "b"
)
for_each_plan[[3]] <- list(
var_1 = 1,
var_2 = "a"
)
for_each_plan[[4]] <- list(
var_1 = 2,
var_2 = "b"
)
You always need at least 1 plan. The most simple plan possible is:
plnr::expand_list(
x = 1
)
#> [[1]]
#> [[1]]$x
#> [1] 1
plnr::expand_list
plnr::expand_list
is esentially the same as expand.grid
, except that its return values are lists instead of data.frame.
The code above could be simplified as follows.
for_each_plan <- plnr::expand_list(
var_1 = c(1,2),
var_2 = c("a", "b")
)
for_each_plan
#> [[1]]
#> [[1]]$var_1
#> [1] 1
#>
#> [[1]]$var_2
#> [1] "a"
#>
#>
#> [[2]]
#> [[2]]$var_1
#> [1] 2
#>
#> [[2]]$var_2
#> [1] "a"
#>
#>
#> [[3]]
#> [[3]]$var_1
#> [1] 1
#>
#> [[3]]$var_2
#> [1] "b"
#>
#>
#> [[4]]
#> [[4]]$var_1
#> [1] 2
#>
#> [[4]]$var_2
#> [1] "b"
for_each_analysis
for_each_plan
expects a list, which will generate length(for_each_plan)
plans.
for_each_analysis
is the same, except it will generate analyses within each of the plans.
upsert_at_end_of_each_plan
If TRUE
and tables
contains a table called output
, then the returned values of action_fn
will be stored and upserted to tables$output
at the end of each plan.
If TRUE
and the returned values of action_fn
are named lists, then the values within the named lists will be stored and upserted to tables$NAME_FROM_LIST
at the end of each plan.
If you choose to upsert/insert manually from within action_fn
, you can only do so at the end of each analysis.
insert_at_end_of_each_plan
If TRUE
and tables
contains a table called output
, then the returned values of action_fn
will be stored and inserted to tables$output
at the end of each plan.
If TRUE
and the returned values of action_fn
are named lists, then the values within the named lists will be stored and inserted to tables$NAME_FROM_LIST
at the end of each plan.
If you choose to upsert/insert manually from within action_fn
, you can only do so at the end of each analysis.
data_selector_fn
Use the addins dropdown to easily add in boilerplate code.
#> Error in knitr::include_graphics(system.file("vignette_resources/tasks/addins_3.png", : Cannot find the file(s): ""
The data_selector_fn
is used to extract the data for each plan.
The lines inside if(plnr::is_run_directly()){
are used to help developers. You can run the code manually/interactively to “load” the values of argset
and schema
.
index_plan <- 1
argset <- ss$shortcut_get_argset("example_weather_import_data_from_api", index_plan = index_plan)
tables <- ss$shortcut_get_tables("example_weather_import_data_from_api")
print(argset)
#> $`**universal**`
#> [1] "*"
#>
#> $`**plan**`
#> [1] "*"
#>
#> $location_code
#> [1] "county03"
#>
#> $`**analysis**`
#> [1] "*"
#>
#> $`**automatic**`
#> [1] "*"
#>
#> $index
#> [1] 1
#>
#> $today
#> [1] "2023-03-10"
#>
#> $yesterday
#> [1] "2023-03-09"
#>
#> $index_plan
#> [1] 1
#>
#> $index_analysis
#> [1] 1
#>
#> $first_analysis
#> [1] TRUE
#>
#> $last_analysis
#> [1] TRUE
#>
#> $within_plan_first_analysis
#> [1] TRUE
#>
#> $within_plan_last_analysis
#> [1] TRUE
print(tables)
#> $anon_example_weather
#> [sc_interactive_anon].[dbo].[anon_example_weather] (disconnected)
#>
#> 1: granularity_time (TEXT) (KEY)
#> 2: granularity_geo (TEXT)
#> 3: country_iso3 (TEXT)
#> 4: location_code (TEXT) (KEY)
#> 5: border (INTEGER)
#> 6: age (TEXT) (KEY)
#> 7: sex (TEXT) (KEY)
#> 8: isoyear (INTEGER)
#> 9: isoweek (INTEGER)
#> 10: isoyearweek (TEXT)
#> 11: season (TEXT)
#> 12: seasonweek (DOUBLE)
#> 13: calyear (INTEGER)
#> 14: calmonth (INTEGER)
#> 15: calyearmonth (TEXT)
#> 16: date (DATE) (KEY)
#> 17: tg (DOUBLE)
#> 18: tx (DOUBLE)
#> 19: tn (DOUBLE)
# **** data_selector **** ----
#' example_weather_import_data_from_api (data selector)
#' @param argset Argset
#' @param tables DB tables
#' @export
example_weather_import_data_from_api_data_selector = function(argset, tables){
if(plnr::is_run_directly()){
# sc::tm_get_plans_argsets_as_dt("example_weather_import_data_from_api")
index_plan <- 1
argset <- ss$shortcut_get_argset("example_weather_import_data_from_api", index_plan = index_plan)
tables <- ss$shortcut_get_tables("example_weather_import_data_from_api")
}
# find the mid lat/long for the specified location_code
gps <- fhimaps::norway_nuts3_map_b2020_default_dt[location_code == argset$location_code,.(
lat = mean(lat),
long = mean(long)
)]
# download the forecast for the specified location_code
d <- httr::GET(glue::glue("https://api.met.no/weatherapi/locationforecast/2.0/classic?lat={gps$lat}&lon={gps$long}"), httr::content_type_xml())
d <- xml2::read_xml(d$content)
# The variable returned must be a named list
retval <- list(
"data" = d
)
retval
}
action_fn
The lines inside if(plnr::is_run_directly()){
are used to help developers. You can run the code manually/interactively to “load” the values of argset
and schema
.
index_plan <- 1
index_analysis <- 1
data <- ss$shortcut_get_data("example_weather_import_data_from_api", index_plan = index_plan)
#> Creating table anon_example_weather
argset <- ss$shortcut_get_argset("example_weather_import_data_from_api", index_plan = index_plan, index_analysis = index_analysis)
tables <- ss$shortcut_get_tables("example_weather_import_data_from_api")
print(data)
#> $data
#> {xml_document}
#> <weatherdata noNamespaceSchemaLocation="https://schema.api.met.no/schemas/weatherapi-0.4.xsd" created="2023-03-10T09:31:18Z" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
#> [1] <meta>\n <model name="met_public_forecast" termin="2023-03-10T09:00:00Z" r ...
#> [2] <product class="pointData">\n <time datatype="forecast" from="2023-03-10T0 ...
#>
#> $hash
#> $hash$current
#> [1] "fa7c1fd90a6d9bf24040ae24919e6972"
#>
#> $hash$current_elements
#> $hash$current_elements$data
#> [1] "edf868d91cd1f5fe47b57b2aeb1d010d"
print(argset)
#> $`**universal**`
#> [1] "*"
#>
#> $`**plan**`
#> [1] "*"
#>
#> $location_code
#> [1] "county03"
#>
#> $`**analysis**`
#> [1] "*"
#>
#> $`**automatic**`
#> [1] "*"
#>
#> $index
#> [1] 1
#>
#> $today
#> [1] "2023-03-10"
#>
#> $yesterday
#> [1] "2023-03-09"
#>
#> $index_plan
#> [1] 1
#>
#> $index_analysis
#> [1] 1
#>
#> $first_analysis
#> [1] TRUE
#>
#> $last_analysis
#> [1] TRUE
#>
#> $within_plan_first_analysis
#> [1] TRUE
#>
#> $within_plan_last_analysis
#> [1] TRUE
print(tables)
#> $anon_example_weather
#> [sc_interactive_anon].[dbo].[anon_example_weather] (disconnected)
#>
#> 1: granularity_time (TEXT) (KEY)
#> 2: granularity_geo (TEXT)
#> 3: country_iso3 (TEXT)
#> 4: location_code (TEXT) (KEY)
#> 5: border (INTEGER)
#> 6: age (TEXT) (KEY)
#> 7: sex (TEXT) (KEY)
#> 8: isoyear (INTEGER)
#> 9: isoweek (INTEGER)
#> 10: isoyearweek (TEXT)
#> 11: season (TEXT)
#> 12: seasonweek (DOUBLE)
#> 13: calyear (INTEGER)
#> 14: calmonth (INTEGER)
#> 15: calyearmonth (TEXT)
#> 16: date (DATE) (KEY)
#> 17: tg (DOUBLE)
#> 18: tx (DOUBLE)
#> 19: tn (DOUBLE)
# **** action **** ----
#' example_weather_import_data_from_api (action)
#' @param data Data
#' @param argset Argset
#' @param tables DB tables
#' @export
example_weather_import_data_from_api_action <- function(data, argset, tables) {
# tm_run_task("example_weather_import_data_from_api")
if(plnr::is_run_directly()){
# sc::tm_get_plans_argsets_as_dt("example_weather_import_data_from_api")
index_plan <- 1
index_analysis <- 1
data <- ss$shortcut_get_data("example_weather_import_data_from_api", index_plan = index_plan)
argset <- ss$shortcut_get_argset("example_weather_import_data_from_api", index_plan = index_plan, index_analysis = index_analysis)
tables <- ss$shortcut_get_tables("example_weather_import_data_from_api")
}
# code goes here
# special case that runs before everything
if(argset$first_analysis == TRUE){
}
a <- data$data
baz <- xml2::xml_find_all(a, ".//maxTemperature")
res <- vector("list", length = length(baz))
for (i in seq_along(baz)) {
parent <- xml2::xml_parent(baz[[i]])
grandparent <- xml2::xml_parent(parent)
time_from <- xml2::xml_attr(grandparent, "from")
time_to <- xml2::xml_attr(grandparent, "to")
x <- xml2::xml_find_all(parent, ".//minTemperature")
temp_min <- xml2::xml_attr(x, "value")
x <- xml2::xml_find_all(parent, ".//maxTemperature")
temp_max <- xml2::xml_attr(x, "value")
res[[i]] <- data.frame(
time_from = as.character(time_from),
time_to = as.character(time_to),
tx = as.numeric(temp_max),
tn = as.numeric(temp_min)
)
}
res <- rbindlist(res)
res <- res[stringr::str_sub(time_from, 12, 13) %in% c("00", "06", "12", "18")]
res[, date := as.Date(stringr::str_sub(time_from, 1, 10))]
res[, N := .N, by = date]
res <- res[N == 4]
res <- res[
,
.(
tg = NA,
tx = max(tx),
tn = min(tn)
),
keyby = .(date)
]
# we look at the downloaded data
print("Data after downloading")
print(res)
# we now need to format it
res[, granularity_time := "day"]
res[, sex := "total"]
res[, age := "total"]
res[, location_code := argset$location_code]
res[, border := 2020]
# fill in missing structural variables
cstidy::set_csfmt_rts_data_v1(res)
# we look at the downloaded data
print("Data after missing structural variables filled in")
print(res)
# put data in db table
# tables$TABLE_NAME$insert_data(d)
tables$anon_example_weather$upsert_data(res)
# tables$TABLE_NAME$drop_all_rows_and_then_upsert_data(d)
# special case that runs after everything
# copy to anon_web?
if(argset$last_analysis == TRUE){
# sc::copy_into_new_table_where(
# table_from = "anon_X",
# table_to = "anon_web_X"
# )
}
}
Run the task
ss$run_task("example_weather_import_data_from_api")
#> task: example_weather_import_data_from_api
#> Running task=example_weather_import_data_from_api with plans=1 and analyses=1
#> plans=sequential, argset=sequential with cores=1
#> Creating table config_data_hash_for_each_plan
#> [1] "Data after downloading"
#> date tg tx tn
#> 1: 2023-03-11 NA 0.5 -10.2
#> 2: 2023-03-12 NA 0.8 -11.5
#> 3: 2023-03-13 NA -0.6 -8.2
#> 4: 2023-03-14 NA 2.2 -2.6
#> 5: 2023-03-15 NA 1.4 -4.1
#> 6: 2023-03-16 NA 2.1 -6.5
#> 7: 2023-03-17 NA 2.0 -4.9
#> 8: 2023-03-18 NA 1.4 -5.5
#> 9: 2023-03-19 NA 2.6 -7.0
#> [1] "Data after missing structural variables filled in"
#> [unified] [unified] [unified] [unified]
#> <character> <character> <character> <character>
#> NA=0 % NA=0 % NA=0 % NA=0 %
#> granularity_time granularity_geo country_iso3 location_code
#> 1: day county nor county03
#> 2: day county nor county03
#> 3: day county nor county03
#> 4: day county nor county03
#> 5: day county nor county03
#> 6: day county nor county03
#> 7: day county nor county03
#> 8: day county nor county03
#> 9: day county nor county03
#>
#> [unified] [unified] [unified] [unified] [unified] [unified]
#> <integer> <character> <character> <integer> <integer> <character>
#> NA=0 % NA=0 % NA=0 % NA=0 % NA=0 % NA=0 %
#> border age sex isoyear isoweek isoyearweek
#> 1: 2020 total total 2023 10 2023-10
#> 2: 2020 total total 2023 10 2023-10
#> 3: 2020 total total 2023 11 2023-11
#> 4: 2020 total total 2023 11 2023-11
#> 5: 2020 total total 2023 11 2023-11
#> 6: 2020 total total 2023 11 2023-11
#> 7: 2020 total total 2023 11 2023-11
#> 8: 2020 total total 2023 11 2023-11
#> 9: 2020 total total 2023 11 2023-11
#>
#> [unified] [unified] [unified] [unified] [unified] [unified]
#> <character> <numeric> <integer> <integer> <character> <Date>
#> NA=0 % NA=0 % NA=0 % NA=0 % NA=0 % NA=0 %
#> season seasonweek calyear calmonth calyearmonth date
#> 1: 2022/2023 33 2023 3 2023-M03 2023-03-11
#> 2: 2022/2023 33 2023 3 2023-M03 2023-03-12
#> 3: 2022/2023 34 2023 3 2023-M03 2023-03-13
#> 4: 2022/2023 34 2023 3 2023-M03 2023-03-14
#> 5: 2022/2023 34 2023 3 2023-M03 2023-03-15
#> 6: 2022/2023 34 2023 3 2023-M03 2023-03-16
#> 7: 2022/2023 34 2023 3 2023-M03 2023-03-17
#> 8: 2022/2023 34 2023 3 2023-M03 2023-03-18
#> 9: 2022/2023 34 2023 3 2023-M03 2023-03-19
#>
#> [context] [context] [context]
#> <logical> <numeric> <numeric>
#> NA=100 % NA=0 % NA=0 %
#> tg tx tn
#> 1: NA 0.5 -10.2
#> 2: NA 0.8 -11.5
#> 3: NA -0.6 -8.2
#> 4: NA 2.2 -2.6
#> 5: NA 1.4 -4.1
#> 6: NA 2.1 -6.5
#> 7: NA 2 -4.9
#> 8: NA 1.4 -5.5
#> 9: NA 2.6 -7
#> Creating table config_tables_last_updated
#> Task ran in 0 mins
#> Creating table config_tasks_stats
Different types of tasks
Importing data
ss$add_task(
name_grouping = "example",
name_action = "import_data",
name_variant = NULL,
cores = 1,
plan_analysis_fn_name = NULL,
for_each_plan = plnr::expand_list(
x = 1
),
for_each_analysis = NULL,
universal_argset = list(
folder = sc9::path("input", "example")
),
upsert_at_end_of_each_plan = FALSE,
insert_at_end_of_each_plan = FALSE,
action_fn_name = "example_import_data_action",
data_selector_fn_name = "example_import_data_data_selector",
tables = list(
# input
# output
"output" = ss$tables$output
)
)
Analysis
ss$add_task(
name_grouping = "example",
name_action = "analysis",
name_variant = NULL,
cores = 1,
plan_analysis_fn_name = NULL,
for_each_plan = plnr::expand_list(
location_code = csdata::nor_locations_names()[granularity_geo %in% c("county")]$location_code
),
for_each_analysis = NULL,
universal_argset = NULL,
upsert_at_end_of_each_plan = FALSE,
insert_at_end_of_each_plan = FALSE,
action_fn_name = "example_analysis_action",
data_selector_fn_name = "example_analysis_data_selector",
tables = list(
# input
"input" = ss$tables$input,
# output
"output" = ss$tables
)
)
Exporting multiple sets of results
ss$add_task(
name_grouping = "example",
name_action = "export_results",
name_variant = NULL,
cores = 1,
plan_analysis_fn_name = NULL,
for_each_plan = plnr::expand_list(
location_code = csdata::nor_locations_names()[granularity_geo %in% c("county")]$location_code
),
for_each_analysis = NULL,
universal_argset = list(
folder = sc9::path("output", "example")
),
upsert_at_end_of_each_plan = FALSE,
insert_at_end_of_each_plan = FALSE,
action_fn_name = "example_export_results_action",
data_selector_fn_name = "example_export_results_data_selector",
tables = list(
# input
"input" = ss$tables$input
# output
)
)
Exporting combined results
ss$tables(
name_grouping = "example",
name_action = "export_results",
name_variant = NULL,
cores = 1,
plan_analysis_fn_name = NULL,
for_each_plan = plnr::expand_list(
x = 1
),
for_each_analysis = NULL,
universal_argset = list(
folder = sc9::path("output", "example"),
granularity_geos = c("nation", "county")
),
upsert_at_end_of_each_plan = FALSE,
insert_at_end_of_each_plan = FALSE,
action_fn_name = "example_export_results_action",
data_selector_fn_name = "example_export_results_data_selector",
tables = list(
# input
"input" = ss$tables$input
# output
)
)